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ABSTRACT

The papers [2,3,4,5] of the list of References dealt with the following

extremum problem: In the hypercube y of Rn we have a k-flat Lk in
general position which is reflected by the (n - I)-facets of Yn , while we

continue indefinitely reflecting these reflexions, thereby generating a finite

or infinite polytope ?. Here we assume that
n

I <k<n- .

The present paper deals with the case when n - 4, and when

(1) k 1, k - 2, and k = 3

The main problem is to determine fk to so.-y away as much as possible fromn
the center c of yn' the main emphasis being the graphic representation of

the extremum ek This is done for the three cases (1) in Figures 2, 4, and

S. These figures are parallel projections of y4 onto our space R3 . The bE
author also made for each of these figures 3-dimensional models made of thin

wooden sticks, and my colleagues, in the Fine Arts Department of UW, say that

these models qualify as examples of Constructive Art. All of these polygons

and polytopes are self-reflecting, meaning thereby that we obtain the entire

object by starting from one of its k-facets, and reflecting it successively in

the facets of y4 "

AMS (MOS) Subject Classifications: 51N20, 52A25 P

Key Words: Extremum problems, billiard ball motions

Work Unit Number I (Applied Analysis)

p
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SIGNIFICANCE AND EXPLANATION

, Inpapers [2,3,4,5] of the list of References the author dealt with

certain extremum problems for billiard ball motions in the hypercube Yn of

Rn . Here we study in greater detail the case when n - 4, the results being

graphically described in the three Figures 2, 4, and S. The author also made

3-dimensional models corresponding to these figures out of thin wooden sticks.

r7 I

I

The responsibility for the wording and views expressed in this descriptive
summary lies with MNC, and not with the author of this report.
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S.,F-REFL.CTING SKEW POLYGOS AND POLYTOPES IN THE 4-DI1MESIOAL. HYPERCUBE

1. J. Schoenberg

1. INTRODUCTION.

This is a contribution to some geometric aspects of the 4-dimensional hypercube Y4 "

Following the pioneering paper (1] of Kfnig and Szfcs the author has studied billiard ball

motions in a hypercube of Rn in his papers (2, 3, 4. 51. The main concern is an extremum

problem which may be stated as follows.

Let

(1.1 yn 0 _ xi  1, i - 1,2,...,n)

:." be the measure polytope in Rn . In y we consider a k-dimensional flat (1 ( k 4 n - 11

given parametrically by

k
(1.2) L: " !u + a (i 1- ...,n)

-i i i

such that the point a - (ai) is interior to y

We now reflect Lk  in the 2n facets x- 0 and x, I of Yn whenever Lk

strikes them, and keep reflecting these reflexions indefinitely thereby generating a finite

or infinite polytope which we denote by e. The entire study was made possible by the use
.9n

of the auxilliary function <x> defined by

x if 0 <x< 1,
(1.3) <x<x + 2> <X> for all real x.

,2-x if I < x < 2,

We may call this the linear Euler spline, it has a zig-zag graph shown in Figure 3 below.

By -eans of it the reflected polytope admits the equations

k
(1.4) • x ( Ou + a

,1
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In general we have the ergodic situations the polytope I is dense in' Yn. As the

opposite of ergodicity we assume that there is an open hypercube

(1.5) 'Ix - cI. P c 0...... P 'C

such that Rk  does not penetrate into C , hence such that
n P

(1.6) InC -
n p

However, in order to have a truly n-dimensional situation, we must assume that Lk  is in a

general position.

Definition 1. We say that Lk  is in general position provided that

(1.7) the n x k matrix i11 has no vanishing minor of order k.
-' i

Our problem is to determine, or estimate, the quantity

(1.8) sup 0 "Pk,n

under the assumptions (1.6) and (1.7). In [4, Theorem 1, p. 551 it was shown that

(1.9) n - -" for all k - 1,2,...,n - 10k,n Z 2 2n

It was also shown ([3], and [4, Theorem 2, p.551) that in (1.9) we have the equality sign

for the two extreme values of k:

.1 1 n- 1 n-i 1
(1.10) 1,n - " -j; 2n a Pn-l,n "2 2n n

It was also conjectured in [4, p. 56] that the equality sign holds in (1.9) also for

k - 2,3,...,k - 2, but this has not been established.

Let us look at the simplest cases.

1. If k - 1 and n - 2, then by (1.10) we have that p1,2 " 1/4, and the polygon

11,2
2 satisfying a2) C 1 - 0d is the slanting square of Fig. 1 (a).
2 s2 1/4

2. If k - a and n - 3, then again by (1.10) we have p1,3 " 1/3, while %-: is

the hexagon 123456 which winds its way around the maximal cube C1/3 , as shown in

Fig. 1 (b)

% 3. Finally we consider the case k = 2 and n - 3. By (1.10) we have P2,3 - 1/6,

2and the corresponding polyhedron I is Kepler's regular tetraheron T - ABCD shown in

Fig. I (C).

-2-
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As in the general case of (1.4) the figures, in all three cases of Fig. 1, are soon to

be self-reflecting: starting from any edge, or facet, we obtain by successive reflections

the entire figure.

The present paper deals with the simplest higher-dimensional case when n - 4, and is

divided in two parts. In Part I we discuss the two cases when k - 1 and k - 2. The

general results (1.9) and (1.10) were given for orientation only, and will not be used in

Part I. In Part II we discuss the case k - 3 using results of our last paper (5].

In both parts the emphasis is on the graphic representation given in Figures 2, 4,

8. These are naturally plane figures, but should be regarded as figures in 
3 . 

These

3-dimensional figures represent parallel projections of onto our space R
3
.

Nevertheless we will often regard them as actually representing Y4V rather than its

projections on R
3
.

1

The author also made 3-dimensional models, corresponding to these figures, made out of

thin wooden sticks, and the author's colleagues in the Fine Arts Department of the

University of Wisconsin say that they qualify as examples of Constructive Art. For further

models concerning the finite Fourier series see Chapter 9 of the author's forthcoming book

Perhaps the main contribution of this paper is the second part of Part I corresponding

to the case when k - 2: The discovery of the skew octahedron 0, in which is self-

reflecting (Fig. 4). It is the analogue in for k - 2, of Kepler's tetrahedron T

of Fig. 1 (c).

Part I. The two cases when k = 1,2

2. The "lucky" billiard ball shot for n - 4. This was discussed for a general n

in (31. Rere we derive it independently for n 4 in

. Our figures 2, 4 and 8, remind us of the absent-minded telcher who writes A, means3
3, and should have written C: Our threl figures are in R , represent objects in R
and should really represent objects in R

-4-
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Theorem 1. The equations

(2.1) x1  - <u>, x2 " <u - 3>, x(

define an octagon 14 ' AOA1 """eA 7 ' shown in Fia. 2, having the following proerties
'% 1

1. N4 is the path of a billiard ball within4 Y

2. A has no point in coinon with the open hypercube
4

(2.2) c Ix- cl < A,'

while the midpoints of the 8 sides of 14  are in 2-dimensional facets of C3 /8 .

3. We have

(2.3) Pl, 4  a

According to the definition (1.6) this means the followings If. 3/8 < p < 1/2, then every

billiard ball path which is initially not parallel to any of the coordinate hyperplanes

" xi - 0, most penetrate within the open hypercube

(2.4) C IIx - cl. < p.

Proofs of 1 and 2. 1. (2.1) define a closed octagon because the equations (2.1) are

linear in each of the eight intervals

< u<-+ , (i- 0,1....7)

If we writ. (2.11 as x fba), and denote the vertices by i " f(i/4), we find that

these vertices are

A0 - ( 0 , 1/4, 2/4, 3/4), A4  ( I , 3/4, 2/4, 1/4)

(2.5) A, - (1/4, 0 , 1/4, 2/4), AS - (3/4, 1 , 3/4, 2/4),

A2 = (2/4, 1/4, 0 , 1/4), A6 - (2/4, 3/4, 1 , 3/4),

A3 - (3/4, 2/4, 1/4, 0 ), A7 = (1/4, 2/4, 3/4, 1

That the equations (2.1) define the path of a billiard ball is due to the zig-zag nature of

the graph of the function (1.3).

2. That A4 n C3/8 -3 may be expressed by saying that 1 is contained in the

closed hypercubical box

(2.6) B -Y4 \ C3/8

That indeed

(2.7) 14 6-

-6-
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is seen as follows: The four arguments

S 2 3

appearing in (2.1), are equidistant with step h - 1/4. This implies that at least one of

the, u - (i/4) say, is at a distance < 1/8 from some integer point J, hence thati

U- - j + e, (181 </8, j e s)

However, from (2.1) and Fig. 3, we see that we therefore have

either 7/8 S x 1, or else 0 <x, 1/,

and this implies that indeed we have (xlx2,x3 ,x4 ) e B. This proves the inclusion (2.7).

gy

7/8. ..... .y- 7/8
7/81

4 g -1;/8

1-2 0I J +1 3

Fig. 3

However, if u = 1/8 say, then (2.1) show that N0 = (X1 ,x2 ,x3 ,X4 ) is the midpoint

of the side AOAI, and by

(2.8) N0  " (1' 1. 5)

we conclude that No  is on the 2-facet x, - 1/8, x2 = 1/8 of the hypercube C3/8

defined by (2.2).

That a segment A0 A1  may intersect the closed hypercube C3/8  in a single point

(2.8) in the interior of its 2-facet

x1 - 1/8, x2 - 1/8, 1/8 S x3 S 7/8, 1/8 1 x4 - 7/8

is a peculiar property of R4 , which would not show well in the parallel projection of

Pig. 2, nor in the 3-dimensional model which is also only a parallel projection of Y4

on R For this reason we do not show C3/8  in rig. 2, nor in the corresponding

-7-
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3-dimensional model. Similarly, AIA 2  touches C3/8  in a single point MI of its

2-facet x2 - 1/8, x3 - 1/8.

For a proof of Statement 3 we refer to (31, or to [4, (4.5)).

A last word on the rectilinear construction of the vertices Ai in Fig. 2. In the

3-facet x4 - 0 we have marked the four points P, Q, R, and S. Clearly P - (1,1,0,0),

R - (0,1,1,0), and therefore their midpoint is Q - (1/2,1,1/2,0). Finally, the

midpoint A3 Of QS, with S - (1,0,0,0), has the coordinates A3 - (3/4,2/4,1/4,0)

which agrees with the value given by (2.5).

3. The case k - 2. Fig. 4 below is to be viewed as a 3-dimensional figure, it shows

a parallel projection of the hypercube

(3.1) 4- (0 x, 1i i 1,2,3,4)

onto our space R
3 .

Let

(3.2) ff' g,g#

be four parallel 2-dim facets of Y4 # so that f and V are symmetric in the center

c - (1/2,1/2,1/2,1/2), and therefore so are g and go. Without loss of generality we

may choose the facets (0.2) to be

f (x 0, x2  01 f, - (x1 - 1, 1 2 - 1,

(3.3)
g = (x -0, x 1), g' (x1 1, x-o}

2 2

Let A be the center of f, and A' the center of f'. Furthermore, let BE' be a

diagonal of g, and let CC' be the diagonal of g' which is not parallel to BB'.

Finally, let 0 denote the surface of the (skew) octahedron having the three diagonals

3.4) AA', BB', CC'

The 12 edges of 0 are marked by heavy lines in Fig. 4, but the reader is asked to

regard 0 as being in R4 . A simple enumeration shows that there are 24 different

octahedra , all congruent to each other.

0 Our main result is

i -8-
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Theorem 2. (1) The octahedron 0 is self-reflecting. This means that the 12 edges

of 0 are in the boundary ay4 # and that the entire surface of 0 iu obtained by

starting from one of its facets, for instance the trian1le ABC, and reflecting it

successively in the 3-facets of y4 .

(ii) The four 2-facets of 0 having the common vertex A are congruent isosceles

right-angled triangles, the four angles at A being all of 900. The same is true of the

four 2-facets with the common vertex A', where the four angles are all of 90". The

*" lengths of the sides of these eight triangles are

(3.5) 3/2, /3/2, r.

(iii) The octahedron 0 has no point in common with the open hypercube

"-(3t.6) C x- cl.(.._: 1/4 4 . 2 2 2, 2-

but each of its eight 2-facets touch a 1-facet of C1/4  in a single pn t., namely its

midpoint. Thus the facet ABC touches the 1-facet' 1 1 1 1 3

"-'.(3.7) x1  .,x ,x , < x4 <
-,4

in the single point x1  1/4, x2 = 1/4, x3 - 1/4, x4 = 1/2. This point of contact is

obtained in Fig. 4 as follows: If M is the midpoint of the hypotenuse BC then the

point (1/4, 1/4, 1/4, 1/2) is the midpoint of AM. Similarly for the reamiing seven

facets of 0.

Remark. Observe that for k - 2 and n - 4, the right side of (1.9) becomes

1 I
S -. This strongly suggests the conjecture that 1/4, but this has not

been established.

A proof of Theorem 2 requires some ideas and results fully developed in (41 which we

" need here for the special case of n 4. For this reason we present them here

independently of (4].

4. Monochromes and 4-Chromes in R2 .

Let

(4.1) (x) = in Ix - ml

denote the distance from the real x to the nearest integer. Its graph is also a zig-zag

curve related to (.> by (xl = (2x>/2.

-10-

........... .......



-.o-

If I1uI + 2u2 + a is a nonconstant linear function, then the equation

I A2u2 + a) - 0 is equivalent with the infinite set of equations

(4.2) 1 uI+ X 2 U2 + a -j (j e z)

Clearly (4.2) define in the (ulU 2 )-plane a sequence of parallel and equidistant lines, the

distance between two consecutive lines, or period, being p - (1A11 + (12121/2.

However, if 5 is a constant such that

(4.3) 0 < 6 < 1

then the inequality

(4.4) W(1 1 u + AU + a

defines an infinite system of parallel and equidistant strips

(4.5) J - u1U1 + x2 u2 + a < j + C e z)

again with the period p = ((112 + (12)11/2, the common width w of the strips (4.5)

being w- 6p. The ratio

(4.6) w/p - 6

is called the density of the set 1(1 of strips. The set MM 8) is called a monochrome

of density 6. M(M) reminds us of the colored strips of an awning used to provide shade

for store fronts, and we like to think of the strips (4.5) as carrying the same color y,

which explains the term monochrome.

Example 1. in Fig. 5 we see the set of vertical strips marked with the letter M1.

As their period is p 1 1, and their width w - 1/2, we see that they form a monochrome

N1C!- of density 6 1/2. The inequality defining is clearly

(4.7) N1(I) jut -, 1 -

Now suppose that we have four monochromes

(4.8) M (8) : {AI u + kAu2 + a) , 11i( 1,2,3,4)

all of the same density 6, where we think of the strips of Ni(6) as carrying the same

color Yi" We further assume that no two among the monochromes (4.8) are parallel, a

condition expressed by requiring that

(4.9) the 4 x 2 matrix IA I has no vanishing minor of order 2

!i • I

!.li -11-
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:. : Fig. 5

'::~VN X XN

:--- ) X X X .

Definition 1. We gay that the monochromes (4.81) from a 4-chrome

(4.10) X418) - fM1 6),1 2 1 5),M 3 1 8),M4 (5) }

""- of density 8, rovided that the entire vlane is covered with maint. hence that

(4.11) U i6 2i-i 
i

[,"i. Examle 2. Our Fig. 5 exhibits a 4-chrome Xa ) which is the basis of our

. discussion. Here MtJis the monochrome of our Example 1. 2Lis horizontal and

defined by the inequality {u 2 - 1} < . The union M()U araycvr h

i'-'ientire plane with the exception of the open squares

M22

'.,(4.12) sp~ {p 1 l < P + 4 < U where (pq)e•Z 2

centered at the lattice ponsand haigsides = 1/2. Thyaehatched in Fi.5. Notice
tha coeroal nqtrs s h thahpeyi areve ubr while1. (

p~q

-M/-12-

S.i .

Defi~~!:Li- inii 1.'Wgja tia th moohoe.48) rma4cr
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covers all squares such that p + q is odd. The inequalities (4.8) for th monochromes of

Fig. 5 are explicitly given by

"2i- -2' 1

f:::: .1c M , tu, 1 <i
.2  -- 2 } 4i

(4.13)
""- %C 1 __1

+ 
___

u 1  + 1
1 24

as is readily verified by the explicit form (4.5).

5. Construction of the Octahedron 0 of Theorem 1.

We derive 0 from the inequalities (4.13) by the device of replacing the function

(.- by the linear Euler spline (., and thereby define the equations

1 2

(5.1)
u1 + u 2 >x 2 )

"" u1 - u2 + 1

By the general principle used in deriving (1.4) we already know that (5.1) define a self-

reflecting polytope in I4" Let us abbreviate (5.1) vriting

(5.2) <xi> - f(ul,u 2 )

This is a doubly-periodic function with the period 4 in u1  and in u2. We also easily

-13-
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* verify that

(5.3) f(u1 + 2,u 2 - 2) f(ulu 2 ), f(u 1 - 2,u 2 + 2) - f(ulu 2 )

The functions on the right sides of (1.5) are continuous in R2; they are also linear

.- functions except on the lines where their arguments assume integer values, where their

" first partial derivatives are discontinuous. These are four sets of parallel lines

U J + 1 u j +1

(5.4)
u u 2 2J , u-u 2

2
)- , for all integers j

In Fig. 6 we draw the 4 x 4 square in the (ulu2)_plane
1i 1 1'

(5.5) s- 1- < u1
- 4-, -- 2  

-<u2 
-4 } "

Drawing appropriate lines (5.4) we find that S is partitioned into 32 triangles indicated

by solid lines.

From (5.1) we find by direct evaluations that the six points

r:~~ ~ f (0, 0, A'' f- ,-) 1,,1
-.. 1 3C (0, 1 , ,1' 0 -C

311

P- = f 1 " (o,o, o) , C " f(-, -)" (, 1, 1)

agree with the vertices of 0 as given in rig. 4. We also label in Fig. 6 these six

points with the letters A,B,...,C'. Using the identities (5.3) it is easy to label all 25

points of Fig. 6 with the letter of the vertex of 0 into which they are mapped.

To get a clear picture of the mapping (5.2) it is convenient to consider the eight

facets of 0

(5.7) T1 " A'BC, T2 " ABC, T3 - ABC', T4 - A'BC'

Ts - AB'C, T6 - A'B'C, T - AS'C', TS - A'B'C'

We also label each triangle of Fig. 6 with the symbol Ti of the facet into which it is

-14-



mapped. In Fig. 6 we divide the square S into four 2 x 2 squares, and Fig. 6 shows

that each of these 2 x 2 squares is mapped into the entire surface of 0:

U2

T T
C, Xj13 '3 5 !\

;TT4T

"T 4

24- 2 2 21 + 21 - 2

142 +T 5- 15-A2

M, . 3 Fi.6
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whence

(5.8) do - 3 ((du 2 + (du

This shows that our mapping from S to 0 is (locally) a similitude of ration I 312.

This shows that the 8 triangles (5.7) are congruent to each other and that they are as

described in (i) and (ii) of Theorem 2; also the values (3.5) are now verified. We believe

to have amply demonstrated parts i) and (ii) of Theorem 2.

6. Proof of Part (iii) of Theorem 2.

The proof has two parts:

1 We are to show that

(6.1) 0f) C .
1/4

2* We are to determine the points of the intersection 0 0 C1/4'

Proof of 10. We establish (6.1) in a way similar to the proof of the inclusion

(2.7): We consider the closed box

(6.2) Bo - -Y4 \ C1 /4

and wish to show that

(6.3) 0 BO
0

Referring to Fig. 7 we state

Lea 1. For a real x we have

(6.4) (x} _ 1/4

if and only if

(6.5) either 0 ( <x> < 1/4, or else 3/4 ( <x I 1

SL.... .

0 1 2 J-1 J

Pig. 7

: ;-'-16-
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A glance at Fig. 7 proves this. Now we use the fact that Fig. 5 represents a 4-chrme

( ) hose four monochromes (4.13), of density ., cover the plane. But then for

*' . every (ulu 2 ) we have

(ul,u 2) e .M(, for some L

and by Lemna 1 and (5.1) we conclude that for some 1 we have
1 3

either 0 < x , or else < x 1

• This establishes (6.3).

Solution of 20. Here we use the peculiarly tight structure of the 4-chrome of Fig.

5. The answer, as described by the excample of the 1-facet (3.7), follows from the

72 following observations.

1-. On the two boundary lines of a strip of any of the monochromes (4.13), like

i43 j) sau. we have ((u, + u)/2) - 1/4.

21. Rvery vertex of the squares spq, of (4.12), is on the boundary lines of three

monochromes. For instance, the point

(6.6) u1 - 1/4, u2 = 1/4

is on the boundary lines of K K2 (!)' M3(1)' as shown by Fig. 5, or Fig. 6. From 1'

and (5.1) it follows that the image of the point (6.6) is on the 1-facet

x l(U 1  1 x 2 (u 2  1)., " 3  
u  u2P x 4"

as is also easily verified.

Incidentally also Fig. 7 shows that (x} - 1/4 iff either x) - 1/4, or else

<x> - 3/4.

We have shown that every facet Ti, of 0, touches C1/4 in a single point having

in Ti the barycentric coordinates (1/2, 1/4, 1/4); these points are especially marked

in Fig. 6.

A Conjecture. Fig. 5 suggests very strongly the following
1

Conlecture 1. The density 6 --1 is the least possible density of a 4-chromo (4.10),

hence satisfying the conditions (4.11) and (4.9).

This is the simplest case (for k - 2 and n - 4) of the Conjecture V of 14, p.671.

-17-
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Part 11. The Case When k = 3

7. The Polytope 804.

The present Part 11 is based on and uses the results of [5]. We also abandon the

hypercube (3.1) and consider instead the hypercube

having its side - 2.

The 4-dimensional analogue SO4 of Kepler's Stella Octangula S0 - S039 was studied

in ES, Part IV, 19, p. 289). It was found to be a connected 3-dimensional polytope 14

having as 3-facets 16 congruent regular tetrahedra and 16 congruent regular truncated

tetrahedra. The shapes of these 3-facets are shown in Fig. 5 of [5, p. 2891.

The 16 regular tetrahedra were shown in [5, 15] to be given by the intersections

4
(7.2) F3 (e1 'e29 e3' 4 ) y ¥4 n { c€x1 = 3J, where i *1

Also that the 16 regular truncated tetrahedra are given by

4
(7.3) l I 61 4 2 E Yixi ' }, where 1= t I

The 32 polyhedra (7.2) and (7.3) are all inscribed in ¥4 in the following senset All of

their 2-facets are on the boundary 974 of y4  i.e. they are in the eight cubes

x- . *1 (i - 1,...,4).

Let x denote a hyperplane of R4 . The 2-facets of the intersection Y4 ) w are the

intersections of w with the 3-facets of Y4# likewise the 1-facets of Y4 A w are the

intersections of W with the 2-facets of Y4 Let us determine the 1-facets of 4 n W,

where w is one of the two hyperplanee

4
' (7.4) I3 C 1 x = 3

-2 IL

or

-18-



4
(7.5) W C X =

For this purpose we select the 2-facet of 4 given by

(7.6) f - (x I  n e1 , x2 - , where 1 *1, -*1)

From (7.4) and (7.6) we find that f n is defined (within y.) by the three equations

X" • nl x 2 - 2' and

(7.7) 3x % 3 - ,r - .

This icet equation depends on the values of n aI, I and becomes

(3 if eni are of opposite signs

C 3 x3 + %4x4 t if CInl . C 22 "

S if CInl I '2 2" -11

However, the first and third equations have evidently no solutions in y4 , and we are left

with the equations

XI CI ' X2 ' 62 , 23x3 + e4 x4 ,

Likewise we find f A T to be described by x , - n,, x2  n and

3 +3 %4 01 2

or

1 if ¢i i are of opposite signs

£3x3 + 4C4- -1 if 1,n 1 - 2 " 2 -t

3 if C1W 1 - - -1

Here the last has no intersection with Y4  and the final result is as follows: All

1-facets of f A y are given by

(7.8) x I n1 , x2 " r, ,3x3 + n4x4 - 1

for 23 C 1, £4 1

The equations (7.8) are evidently the four sides of the square having as vertices the

successive midpoints of the four sides of the (square) 2-facet (7.6) of Y4 . We reach a

-19-
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similar conclusion if we replace in (7.6) x1 and x2 by xi and xj(i < J). We have

fproved

Theorem 3. 4ha 6 x 4 = 24 square 2-facets. In each of theme squares we

inscribe the squaro with vertices in successive midpoints of its sides. The sides of these

inscribed squares give 4 x 24 96 segments, and these 96 segments are all the 1-facets

Of SO4.

9. A Description of Fia. 8.

Like Figures 2 and 4 Fig. 8 shows a parallel projection of Y4 on our R3 . In view

of our new definition of Y4 0 the lower cube is N4  -1 and the upper cube in x4  1.

No attempt was made to draw all 96 1-facets of 804 of Theorem 3, as this would have

overburdened our Fig. 8, rather we exhibit only four of the 32 3-facets of 804, which are

connected by three successive reflexions.

We start from the tetrahedron

(8.1) F3(1,1,1,1) - ABCD

It is in Y4, but its four 2-facets are In four of the 3-facets of y4: Thus

(8.2) BCD C {X4 - 1) 1

indeed, Fig. 8 shows clearly that BCD belongs to the top cube. (8.1) is reflected by each

of the four 3-facets of y which contain its four 2-facets. However, we choose to
44

reflect (8.1) only in the 3-facet x4 - 1. To do this reflexion we rewrite (see (7.2))

Sx 1 + x2
+ x3 

+ x4 - 3 as

Xi + x2 + x3 + (x4 - 1) - 2 ,

"* and change the sign of the fourth term on the left, obtaining the new equation

KI + x2 + x3 - Ix4 - 1) - 2

* or

X1 + x2 + X3 4 1

obtaining the new 3-facet
a 18~~(.31)l11,,1

" From (7.3) we see that (R.3) is in the hyperplane x, + x2 + x 3 - 14 - I, and we wish to

-20-
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Fig. 8
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reflect it in x4 - -1. To do this we rewrite it as x1 + x2 + x3 - (x4 + 1) - 0, and

change the sign of the 4th term to obtain

x I + x2 + x 3 + (x 4 + 1) - 0

or -x I - x2  x3  x4 1. Again by (7.3) we see that we have reached the 3-facet

(8.4)

Our final reflexion is again in the top cube 4 ' 1: We rewrite -X 1 -x 2 - x3- 4

as -xI - x2 - x3 - (x4 - 1) - 2 and changing the sign of its 4th term we have

-x1 - x3 + (x4 - 1) - 2, which in equivalent to -x, - x2 - x3 + x4 - 3. By (7.2)

this gives our last 3-facet

(8.5) 73(-1,-1,-1,1)

By (8.1), (8.3), (8.4), and (8.5) we obtain the string of four 3-facets of 804:

(8.6) F3 (1,1,1,1) U FI(1,1,1,-1) U F1(-1,-l,-1,11 U F3 (-1,1,-1,1)

which we now attempt to represent in Fig. 8.

The first is given by (8.1). The second, F 1 s1,1,1,-1) isa truncated tetrahedron

having as top 2-facet the triangle BCD, and as bottom 2-facet the regular hexagon

(8.7) PQRSTU.

Its remaining 2-facets are three triangles and three hexagons, which are affine regular,

and are indicated by "dashed" lines. The third 3-facet, FI(-I,-1,-I,-11 has also as

bottom 2-facet the hexagon (8.7), while its top 2-facet is the triangle B'C'D', also

belonging to x4 = 1. Its remaining 2-facets are also three triangles and three hexagons

shown by "dash-dot-dash' lines. The last term of (8.6) is the tetrahedron

(8.8) F3(1,-,- ,11-) A'B'C'D.

Let me say that the 3-dimensional model of Fig. 8 shows much more clearly the two

truncated tetrahedra (8.3) and (8.4), also because their edges are pointed in different

colors.

The following "optical" remark might help to illuminate the situations If we place a

light-bulb in the interior of ADCD so that its rays spread within the 3-flat determined by

E: ABCD, then its rays strike x4 - I in the triangle BCD, get reflected by x4 - I into

-::. (8.3), filling it and striking x4 - -1 in the hexagon (8.7). These rays are reflected

-22-



by x 4 -- 1 into (9.4). Finally, these rays again strike N4  1 in B'C'D', and are

reflected into the tetrahedron (8.9). Notice that the extreme points A and A' are

symmetric in the center c of Y.

Our final remark is that the 32 3-facets of 504 fall apart into 8 strings of

polyhedra, like the union (8.6), as follows. For C, il we assume that

(9.9) £ £ 1
123

In place of (8.*1) we now start with the tetrahedron

(9.10) r 3 (cite 2"e3%)

and perform the ref lexions in x. - e4' X4 - -C4 and finally in x. c 4 These

operations, as described before, lead to the union

(8.11) F (cite C 1 £4  U F 1 (e 1 ,C 2 ,C 3 ,-£ 4 ) U 1 (- 1 - 2 - 3 - U F 3 (-' 1 -£' 2 ,-43,C 4 )

Varying the e I subject to (8.9) gives eight unions like (8.11), and together they contain

all distinct 32 3-facets fo SO.. if we disregard the restriction (9.9), we would obtain

each 3-facet twice.

flollelaan 10

Naarden, North Holland
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